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1

The fundamental properties of
CW-complexes

Balls and balloons are the standard models for the cells used in the theory
of CW-complexes; thus, the chapter starts by ‘playing’ a bit with such
toys. Next, it continues with a discussion of the problem of attaching
n-cells to a space and with the actual construction of CW-complexes,
followed by a detailed study of the fundamental properties of such spaces.

The unusual number given to the first section of this chapter, namely
1.0, stems from the fact that the material discussed therein is really very
elementary.

1.0 Balls, spheres and projective spaces
The ball in the Euclidean space R"*! is the space

Bt = {s= (50,51, lsi< 1
its topological boundary is the sphere
SB"*t=8§"={seB"*! : |s| =1}
and the difference
Brtl= g+ 1\Sn

is the interior of the ball B**!, namely, the open ball. Observe that the
ball B =[ —1,1] does not coincide with the unit interval I =[0,1] (in
the sequel, the boundary of I will be denoted by D).

Intuitively, one may view a sphere as the skin of a ball (i.c., a balloon).
To blow up a balloon, there must be an opening, a ‘base point’; thus, set
the point e, = (1,0,...,0) as the base point of both B"** and S™.

Spheres do not appear only as boundaries of balls; in addition to the
inclusions

i S"—>Bn+ 1’
it will be necessary to discuss several standard maps relating spheres and
balls. The list of such maps described in this section is actually longer

than that needed to develop the material herein. The primary two reasons
are:



2 The fundamental properties of CW-complexes

these maps could be used to fill in the details for the material sketched
in the appendix;

some of the maps discussed could be used in the homology of cellular
structures {e.g., the Hurewicz isomorphism theorem). Although
homology is beyond the scope of this volume, it is a natural
continuation for the theory here developed.

It is often convenient to view all balls B"*' and all spheres S" as
contained in the space R® of all sequences which vanish almost everywhere,
via the embeddings s+ (s,0,0,...); the topology of R® is determined by
the family of all Euclidean subspaces R” (see Section A.2). Within this
framework, consider the origin of R® as the 0-ball

= {0},

whose boundary is the ‘sphere’

6B®=S8"1= (¥,
and which coincides with its interior
B® = B°.

In contrast with these ‘minimal’ models B® and S~ !, one has the infinite
ball B* = ),50B" and the infinite sphere S® = U,,; oS" as subspaces of
R*. Notice that these two infinite models are determined by the
corresponding families of finite models (see Corollary A.2.3).

The ball B” is embedded into the ball B"*! as a strong deformation
retract; a suitable retraction is the map

jn . Bn+1 _}Bn,
given by
J8) = (S0, -, Sp—1)-
Define the ‘eggs of Columbus’ using the map j*, i.e. the inclusions
j+,j— : Bn+1>—>Bn+1
given by
J+ ) =055, 1555+ /1= 1))

and

Jo(6)= (50581535, = /1= () 2).
The function j, (resp. j_) maps the upper (resp. lower) hemisphere onto
itself and the lower (resp. upper) hemisphere onto the equatorial ball B"
(see Figure 1).
The deformation

d":(B"x B"Yx I—-B"x B"
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Figure 1

defined by
d"((s, ), t)=((1 —t)s + t(%(s + ), (1 =08 + t(3(s +57))),
for every (s,s)eB" x B" and every tel, shows that the diagonal subspace
AB" < B" x B" is a strong deformation retract of B” x B"; thus, balls are
LEC spaces (see Section A.4, page 253).
The sphere S” ! is included into the sphere S” as its equator, and this
inclusion, in turn, extendg to embeddings

“i_,iy : B"»>§"
of the ball B" into the southern, respectively northern hemisphere of S*,
given by

and

L) =(5/1—1sP),
respectively, having j*|S” as common left inverse.

The maps i_,i, arc homotopic only in a very curious way; in fact, a
homotopy can be constructed by observing that both maps are homotopic
to the constant map onto the base point, but there is no homotopy between
them relative to the boundary (see the end of this paragraph). Viewed as
maps into B"*! the maps i_,i, are homotopic in a neat manner namely,
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rel. S*~! via the map
h":B"xI->B'"!,
given by

W (s,1) = (s, (2t — 1) /1— |s]?).
The importance of this map h" resides in the fact that every homotopy
rel. "~ ! given between two maps defined on B" factors through A". In
particular this shows: Ifi_,i, were homotopic rel. "~ !, any corresponding
homotopy factored through A" would yield a retraction of B**! onto S*,
contradicting Brouwer theorem (see TheoremA.9.4).
Next, recall that the map (Figure 2)
" S"xI->B"t!
given by
s, t)=(1—1t)e, +1s
induces a homeomorphism
S"A I_‘)Bn+1

where the symbol A denotes the usual smash product

S"AT=8"x1I/S"x{0}u{ey} x 1.
The formation of the smash product with one factor equal to I is also
known as the reduced cone construction. The reduced suspension of a based

space (X, x,) is one step further away; this construction is given on the
based space (X, x,) by

EX=XxI/X xTuxyx1

S"x1 €

¢ h $"x {0}
L)

Figure 2
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(note that X.X is homeomorphic to the smash product X A SY); if
fi(Y,y5)—=(X, x,) is a based map, its suspension
Zf:E2Y-2X

is the map induced l}yf x1:YxI->XxI.

For n> 1, define k" : "' x I - S” (see Figure 3(a)) by

kn(s,t):%’hc"_‘(s,h), o0<e<i
i_c" s, 2 —20), ISt

the map k" takes S" ' x [ue, x I into e, and is bijective outside that

space; thus, it induces a homeomorphism X.5"*! - §" Moreover, the
map k" can be extended to a map k" : B" x I - B"*! (see Figure 3(b))
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simply by taking

k(e (s, 1), 1) = c"(k"(s, 1), 1');
this latter map induces a homeomorphism X.B"— B"*'. Finally, notice
that the map k" factors through the map ¢*~ !, and thus induces a map

" : B"— 8"

formally, b"oc"~'=k" In turn, the map b" gives a homeomorphism
between B"/S"”! and S". It is convenient to extend the definition of b” to
include b° : B® —S° given by b°(B% = { — 1}. Figure 4 indicates that b"
is homotopic rel. {e,} to i, via a homotopy moving "~ only in the lower
hemisphere.

The folowing maps are relevant to the definition of homotopy groups:
(1) the units

un:Bn+1_>Bn+l’ a":S"—>S"

defined for all neN as the constant-based maps;

(11) the inversions

ln . Bn+1_‘)Bn+1
defined by I*(k"(s,1)) = k"(s 1 — 1) for every (s,t)e B* x I; this inversion on
B"* ! induces an inversion [* : " — §" on S”; notice that I, I" are reflections
about the hyperplane R" = R"**:
(505 sSurSus1) = (Sos-+vsSm — Sut 1)
(iii) for n > 1, the pinchings (see Figure 5)
pn . Bn+1“)B"+1 VBn+1

given by
(k"(s, 20), €5), 0

n kn X —
piis ) {(eo,k"(s,zt—l)),

NN

NN
—

N [
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Figure 5

this means that the points with last coordinate equal to zero are mapped
into the wedge point (e, ;).
The maps p" induce the pinching of the spheres
PSStV St
(The symbol V denotes the usual wedge product: for any pair of based
spaces, say (X,xg), (Y,y,), the space X VY is defined to be
X x {yo}u{xo} x Y, regarded as a subspace of X x Y.)
An inaccurate but graphic description of the pinching is provided by
cell division, a basic process in biology.
For n > 2, there is another useful type of pinching:
ﬁ . B"+1—>B"+l VBn+1
given by
An (k" (k"™ (s, 2u), t), e,), 0<
P (k" (k I(s,u),t))={ ~1 °
(eo, kn(kn (S, 2u - 1), t))& <
This means that the points with penultimate coordinate equal to zero are
mapped into the wedge point (e, ;).
Next, consider the map obtained by projecting B"*! x I onto
B**! x {0} uS" x I from (0,2) in R"*! x R (see Figure 6):
BT x I 5B x {0 u St x T

U<y,
u<l.
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1
oy
Lo
/ 1
oy
II 'l Bn+l><[
i
0
Figure 6
2
2 (S,O), Ogtgz(l-lsl)a
—t

(st = :
—(s,2]s] +t—2), 20— s << 1, |s| #0.
s
Notice that the restriction of r"*! to B"*! x {0} US" x I is the identity
and that the composition of »"*! with the inclusion of the latter space
into B"*! x I is homotopic rel. B"*! x {0} US" x I to the identity map,

via the homotopy
R . Bt xIxI->B""t x1

given by
R Ms,t,u) =u(s,t) + (1 —wyr"* (s, 1);
thus, B"*! x {0} US" x I is a strong deformation retract of B"** x I. This
means that the inclusion of $” in B"*! is a closed cofibration (see
Example 1, Section A.4).
The restriction of the homotopy R" to B" x {1} x [ ~B" x I factors
through the map A", thereby inducing a homeomorphism (see Figure 7)
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R"}|B"x {1} xI

B"x1I B"x1I

hn v

Figure 7

v BTl Br X I
one should notice that, regarding i, , i _ as inclusions of B"into B"* 1, then
vhei_=r"|B"x {1} and v"ei, =inclusion.
The homeomorphism ¢", interesting in its own right, can be used to
interchange the components B"x {0}uS""! x I and B" x {1} of the
boundary of B” x I: to see this, first note that v" maps the upper hemisphere
of S"*! onto B" x {1} and its lower hemisphere onto B" x {0} US"™! x [;
the actual interchange is then effected by the composite function
w" =" ["o(p")" . Two more remarks about the map v" are called for:
firstly, v" induces a homeomorphism
" S" B x TuS" ! xI;
secondly, v" combines with the two pinchings p” and p" to yield an
interesting commutative property:
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Lemma 1.0.1 For every n>= 1,
(i) there is a unique map
q":(B"VBYXI->(B"x)V(B"x1I)
such that
g o(p" x D" = (0" V v")e ps
(ii) the map
g":(B"x)V(B"xI)>(B"V B}y x I
induced by the obvious inclusions is a left homotopy inverse to g™ there is

a homotopy §"°q"~1 rel.((eg,e,),1) and transforms the boundary of
(B"V B") x I into itself. O

In order to have enough fun in this game of balls and balloons, one
actually needs more than one ball and one balloon in every dimension.
Thus every space homeomorphic to the ball B” (respectively, B") is called
an n-ball (respectively, open n-ball) and every space homeomorphic to the
sphere S" is called an n-sphere. If B is any (n + 1)-ball, its boundary sphere
ie., the image of $” under a homeomorphism B**! — B, is denoted by 6B.

Proposition 1.0.2 For any non-negative integers p and q, B* x B? is a
(p + q)-ball with boundary sphere B? x ST~ USP~! x B%; moreover, for
every n>0, (B1)" is an n-ball.

Proof Define @ : B? x B?— B”*? by setting, for every (s,s')eBP x B,

D(s,s') = {max (Is, [)//Is]* + 15[} (s,5),
if (s,5") # (0,0) and
@(0,0)=0.
The continuity of @ is not difficult to prove. Its inverse is obtained as
follows. Let s =(sy,...,Sp,...,s,, ,)€B?* be given. Set s’ =(sy,...,s,) and
8" =(Sp115-+5S,44); then, define
D (s)= {Is|/max(|s'],|s"])}(s,s").

The restriction of @ to §(B? x BY) gives the second homeomorphism

announced in the statement. The third homeomorphism is obtained by
induction on n. O

Projective spaces
From the topological point of view, projective spaces are intimately
connected to spheres. However, before exhibiting this connection, one
must give the definition of ‘projective space’ over a field.
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Let F be a (not necessarily commutative) field. The n-dimensional
projective space over F, denoted by FP", is defined as the set of all
1-dimensional (left) vector subspaces of the (n + 1)-dimensional (left) vector
space F"*1. The space FP" can be identified with the set (F"*'\{0})/ ~,
where ~ is the equivalence relation defined by: s ~ 5" iff there is a scalar
teF with s’ =ts.

If F is a topological field the projective space FP" is given the identi-
fication topology induced by the projection F** 1\ {0} - F P". In this book,
F represents the field R of real numbers, the field C of complex numbers
or the skew-field H of quaternions. Then the space F"** can be identified
with one of the Euclidean spaces R**!, R?"*2 or R*"* %, Note that one can
find, for every point in the projective space, a representative of length 1
in the corresponding Euclidean space, i.e., a point in the spheres 7, $"*1
or §*"*3 These identifications yield, respectively, the identification maps

gr" : S">RP",
an . S2n+1 —>CP",
an : S4n+3—>HPn.
The inverse image of a point in the projective space is a pair of antipodal

points in S" for F=R, a circle (= 1-sphere) in $***! for F=C and a
3-sphere in $***3 for F = H.

1.1 Adjunction of n-cells

The reader should always bear in mind that all the work in this book is
done within the context of the category of weak Hausdorff k-spaces,
denoted simply by Top (except in Section A.1, where it is denoted by
wHk(Top)).

Intuitively, a CW-complex is a space which can be considered as a
union of disjoint ‘open cells’. For instance, the ball B"*! can be considered
as the union of an (n + 1)-cell, namely the open ball B"*! an n-cell, namely
the punctured sphere S"\{e,}, and the O-cell {e,}:

Bl =B U(S"\ {eo})u e ).
In this book the term ‘cell’ will often be preceded by the adjectives ‘open’,

‘closed’, ‘regular’, or the combination ‘closed regular’. The following list
is intended to make matters clear. A subspace e of a space X is said to be

an open n-cell in X (neN), if it is an open n-ball (recall that an open
n-ball is a space homeomorphic to the open ball li”);

a closed n-cell in X, if it is the closure (in X) of an open n-cell;

a regular n-cell in X, if it is an open n-cell whose closure is an n-ball
and whose boundary in the closure is an (n — 1)-sphere;

a closed regular n-cell in X, if it is the closure of a regular n-cell.
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Observe that an n-cell does not have to be regular: the punctured sphere
S"\{eo},n>0, as a subspace of the sphere S”, is an example of this fact.
For open, regular or closed regular n-cells e, the natural number 7 is the
dimension of e: dim e = n (see Section A.9). By abuse of language, one also
assigns to a closed n-cell the dimension n, although, outside the theory
of CW-complexes, this does not necessarily coincide with the covering
dimension of the space under consideration (see Example 5). But, if a space
X contains an n-cell of any type, then dim X = n, because inside each open
n-cell there are closed n-balls (see Corollary A.9.2).

The ball B**! was decomposed into a union of open cells at the
beginning of this section. In what follows, one should have this sort of
cellular decomposition in mind. For the sake of simplicity, the formal
constructions and proofs will often proceed in a slightly different manner.

A pair (X, A) is an adjunction of n-cells, neN, if X can be viewed as an
adjunction space (see Section A.4)

X=ALl,Y

where Y is a topological sum of n-balls and the domain of f consists of
the boundary spheres of the balls forming Y; in other words, if X is given
by a pushout of the form

LIB,=Y —X
2

]

LS, —— 4,

A
with B, an n-ball and S, = dB,, for all indices 4 in an arbitrary index set
A. If n =0 the definition means simply that X is a topological sum of 4
and a discrete space. If (X,A4) is an adjunction of n-cells, any
path-component of X\ 4 is an open n-cell in X, called an n-cell of (X, 4).
Each induced map B, — X is called a characteristic map for the Ath cell;
each induced map S, —» 4 is an attaching map for the Ath cellL If A is a
based space and every map S; — A4 is based, the pair (X, 4) is said to be
a based adjunction of n-cells.

Proposition 1.1.1 If (A4, a,) is path-connected and (X, A) is an adjunction of
n-cells, n > 0, there exists a based adjunction of n-cells (X', A), such that X’
is homotopically equivalent to X via homotopies rel. A.

Proof Suppose that X = A |(|_],B,). Let f;:S; — 4 be the attaching map
for the Ath cell and let w; : I— A4 be a path such that w;(0)= f;(eo),
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w,(1) = ay; choose a representative for (w,), '([f;]1) (see page 287 in the
appendix), for every index A. The maps ) together define a based adjunc-
tion of n-cells (X', 4) with the properties required (see Proposition A.4.15).

O

Example 1 For every n> 0, the pair (B", $"" ') is an adjunction of just
one regular n-cell; one can take the identity of S"~! as an attaching map
and the identity of B" as a characteristic map.

Example 2 For every neN, the pair (S*, {e,}) is an adjunction of just one
non-reguiar n-cell. If n> 0, the map b":B" - S" (see page 6) can be used
as a characteristic map; here there is no choice for the attaching map: it
has to be the constant map.

Example 3 For every n> 0, the pair (S",8"" ') is an adjunction of two
regular n-cells. Take as components of the characteristic map the embed-
dings i,,i_ (see page 3) of the ball B” as the upper, respectively the
lower, hemisphere into the sphere S".

The next example is not so trivial.

Example 4 For every neN, the pair (B"** U §"*!, B*US") is an adjunction
of exactly four regular (n + 1)-cells. To prove this assertion, first observe
that
Bn+1 Usn+1 — Bn+1 l_jB"us"(BnUSn+ 1),

then note that because of the addition law (L3), it is enough to show
that each of the pairs (B"*!,B"uS") and (B"uS"*!,B"US") is an
adjunction of just two (n+ I)-cells. Example3 and the horizontal
composition law (L1) are used to show that the pair (B"uS"*!,B"US")
is an adjunction of two (n + 1)-cells. To prove that the pair (B"**, B*US")
is an adjunction of just two (n + 1)-cells, construct the appropriate pushout
using the ‘eggs of Columbus’ (see page 2) as components of the
characteristic map.

Example 5 Let f : B' - B",n> 2, be a Peano curve, i.c., a map from B!
onto B". Then, the composition f¢j!|S! defines a partialmapg : B>~/ — B"
(for the definition of the map j', see page 2). The pair (B"|_|,B? B") is
an adjunction of just one 2-cell. The corresponding closed 2-cell has
covering dimension n > 2!

Example 6 Let F be one of the fields R, C, H, of the real, complex or
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quaternionic numbers, respectively; also, let d be the dimension of F as a
vector space over R. Then, for every n >0, the pair (FP",FP"" 1) is an
adjunction of just one non-regular dn-cell. The composition of the inclusion
i,:B->S5™" (see page 3), the embedding S*>»S**97! and the
projection ¢h:S**?"1 >FP" (see page 11) may serve as characteristic
map for the adjunction; this characteristic map induces the attaching map
qux?—l . Sdn*l —>FPn_1.

Proposition 1.1.2 Let (X, A) be an adjunction of n-cells, say
A

Then the following statements hold true:

(1) the inclusion A>->X is a closed cofibration;

(11) the space X is{perfectly) normal, whenever the subspace A is (perfectly)
normal;

(ii1) the space X has dimension n, whenever the subspace A is a normal
space of dimension < n and the index set is not empty;,

(iv) X\A is a topological sum of open n-cells, one for each index 2;

(v) for any map f':A— A, the pair (A" 1, X, A") is an adjunction of
n-cells.

Proof The inclusion dom f>— Y is a topological sum of closed cofibrations,
and therefore is itself a closed cofibration. Thus (i} follows because the
attaching process preserves cofibrations.

Since | |, B, is perfectly normal, the adjunction space X is (perfectly)
normal if 4 is (perfectly) normal (see Proposition A.4.8 (iv)).

To prove (iii) note that under the first part of the condition given, the
space X has dimension < n (see Proposition A.4.8 (v)); if n-cells are really
present, dim X > n.

Part (iv) follows from the fact that X\A4 is homeomorphic to
Y\dom f = Li(B;\S)).

Finally, (v) follows from the law of horizontal composition of
Section A.4. O

Remark According to (iv), the index set for 1B, can be viewed as the
set n(X\A4) of path-components of X\ A. Give the discrete topology to
the set (X '\ A4); then the space B" x n(X\A) can be viewed as the domain
of the characteristic map for the adjunction of n-cells (X, A), and the space
S""1 x n{X\A) can be viewed as the domain of the attaching map for the
same adjunction. O
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The bridge between the point of view of considering globally all the
cells used in the adjunction, and that of considering successive attachings
of single n-cells, is given by the following result.

Proposition 1.1.3 The pair (X, A) is an adjunction of n-cells, iff

(i) for every path-component e of X\ A the pair (A e, A) is an adjunction
of just one n-cell (A e is considered as a subspace of X) and

(ii) the space X is determined by the family {A} v {e : een(X\A)}.

Proof ‘=" (i} Let e be an n-cell of (X, A) with attaching map f, and
characteristic map f,.
To prove the equality

Ave=Al], B,

observe first that Aue= AU (B,\S,), as sets. It remains to show that the
subspace topology of Aue is the same topology as that of the adjunction
space A |, B,. Notice that by the universal property of the adjunction,
the space A|_|,, B, has a finer topology than Aue. Next, let V< Aue be
such that V1 4 is closed in A4, and fe‘l(V) is closed in B,. Because X is
a weak Hausdorff k-space, V f,(B,)=f.(f; (V) is closed in X (see
Lemma A.1.1), and, hence, in 4 Ue; this, together with the fact that ' A
is closed in A4, implies that V is closed in X.

(ii) Let U < X be such that Un A and U né are closed respectively in
A and ¢, for each een(X\A). Then, if f is the characteristic map of the
adjunction, f~}(U)=uf, "(Uné) is closed.

‘=" For every een(X\A), let f,:S,— A denote an attaching map
generating the adjunction space Aue=A| |, B,. Let f:[]S,— A4 be the
map defined by the maps f,,and let X be the adjunction space A|_| LB
with a fixed characteristic map f. The pair (X, A) is an adjunction of n-cells,
and thus it suffices to show that the spaces X and X coincide (up to
canonical homeomorphism). The universal property of the adjunction
space X gives rise to a bijective map X — X; thus, assume that the spaces
X and X have the same underlying sets, and the topology of X is finer
than that of X.

Notice that f(B,) = & because X is a weak Hausdorffl k-space. Let V < X
be such that VnA4 and f~ (V) are closed in 4 and | |B,, respectively.
Hence [ '(V)nB, is closed in B, for every eem(X\A), because
F(f~YV)nB,) =V né,itfollows that V neéis closed in &, for every een(X \ A).
Condition (ii) implies that the set V is also closed in X. O

The following result, which is actually contained in the previous proof,
has some interest in its own right.
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Lemma 1.1.4 Let (X, A) be an adjunction of n-cells and let e be an n-cell
of (X, A). Then,

= f(B),
where f denotes a characteristic map for e and B denotes an n-ball in the

domain of f. |

An advantage of looking at the adjunction of just one cell at a time lies
in the fact that this process can be characterized without the explicit
construction of a pushout diagram.

Lemma 1.1.5 The pair (X, A) is an adjunction of just one n-cell iff
(i) A is closed in X

and
(ii) there is a map B"— X inducing a homeomorphism B" — X\ A.

Proof ‘=": clear from the definition.

‘=" Let f: B"—»X be a map as described in condition (ii). First,
prove that f takes the boundary S* ! of the ball B" into the space 4. To
this end, assume the existence of a point seS" ! such that f(s)e X\ A.
Then there is a unique point s'eB" such that f(s) = f(s'); furthermore, the
inverse image of every neighbourhood of f(s") contains points close to s,
contradicting the assumption that f induces a homeomorphism B" — X \ 4.

Denote by f:S5" '—A the map induced by f, and form the
commutative square

B, - x
U 4
I

It remains to prove that X has the final topology with respect to f and
the inclusion A = X. To show this, first observe that the subspace 4 is
closed in X, by (i), and the subspace f(B") is closed in X, because X is
weak Hausdorfl. Since the space X is the union of these two closed
subspaces, a function with domain X is continuous iff its restrictions to
the subspaces 4 and f(B") are continuous. d

The condition (i) in this lemma is necessary, as one can deduce from the
following,

Example 7 The pair (B2, B*\B") satisfies condition (ii) for n = 1, but fails
to be an adjunction of a 1-cell.
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Because a space with a finite closed covering is determined by that covering,
condition (ii) in Proposition 1.1.3 is superfluous if one deals with
adjunctions of only finitely many cells. The following is an example
showing that this condition is unavoidable in the general case.

Example 8 Let {B, : AeN\{0}} be a countable set of copies of the ball
B'. For every index 4, let f; : B, — I denote an embedding whose image is
the interval [1/(1 + 1), 1/A] and define f : B, —1 by taking f|B, = f,.
Since f(1S,) is contained in

A= {O}U{l : leN\{O}}’

f induces a map f : 1US,;— 4 and a commutative square

7

L]B}, — I
[—]Sl —_— A
I

Now, for every index A, define the 1-cell e, = f(B,) in I; then
1 1
Aue,1=Au{teR : —Sts}
A+1 A

and the pair (4 ue,, A)is an adjunction of just one 1-celi (see Lemma 1.1.5).
But I is not determined by the family {4 ue;}! To see this, consider the
sequence {(24 + 1)/2A4(4 + 1)}. This sequence meets every space Aue, in
just one point, thus it is closed in the topology determined by {Aue,};
however, it converges to 0 in the usual topology of the unit interval I.
(This situation may also serve as a counterexample in general topology:
it is easy to see that, with respect to the topology of I determined by
{Aue,},0 is a cluster point of f(L1B;), but no sequence in f(LB,)
converges to 0; this means that the resulting space is not a Fréchet space.
Similar ideas will be used in Example 13 of the next section.)

There are two more relevant examples of pairs which are adjunctions of
infinitely many n-cells.

Example 9 The concept of the wedge of two spheres S" V §" was briefly
discussed in Section 1.0; this concept has the following generalization. Let
I be any set; for every yelI take a copy of the n-sphere S” with its base
point ey, i€, (S",,e,) = (8", e5). The wedge product of the family of based
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spaces

{(S:9e0):yer}
(also called a bouquet of n-spheres) is the based space (V (87, %), given by
the set

\£S; = {(SV)EH S7:s, # e,, for at most one yef},

yel
endowed with the final topology with respect to the canonical map
p:[1Sh— Vv S,
yel” yel®
and the point * taken to be the element (e,). Note that if I” is finite, this
topology coincides with the subspace topology induced by [ 1,.,-S}.

The pair (V -S", #) is an adjunction of n-cells; notice that there are as
many n-cells as there are elements in I'. A characteristic map for this
adjunction is given by the map

fLB"2B"xI'>V 5"
yel” r

(here I' is given the discrete topology) defined by f(s, ) =(s,), where
s, = b"(s).

Example 10 Let © be an abelian group and let n be a natural number
> 1. Let FA(rn) be the free abelian group generated by the elements of =,
and let I" be a basis of the kernel of the canonical homomorphism
FA(rn)—> . Let ¢:FA{(n)—>m,(V,S",*) denote the homomorphism which
assigns to a generator a of FA(rn) the homotopy class of the inclusion of
S" into the n-fold wedge V,S" of S" as the ath factor. Next, for each yerl,
choose a representative f,:S"— V,S" of the homotopy class ¢(y). The
maps f, define a partial map f:B"*' x I'-/— V,S", whose resulting
adjunction space M(m,n) is called a Moore space of type (m,n). The
construction of M(x, n) shows that the pair (M(=n, n), V,S") is an adjunction
of (n + 1)-cells.

What follows is more than just an example.

Theorem 1.1.6 (i) Let (X, A) be an adjunction of n-cells and let p : XoX
be a covering projection. Then, the pair (X, A) with A =p~Y(A), is also an
adjunction of n-cells.

(i) Let (X, A) be an adjunction of n-cells, n>2, and let p : A—>Abea
covering projection. Then, there are an adjunction of n-cells ()? ,Z) and a
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covering projection q: X — X, such that p is induced from q by the inclusion
A — X. In particular, if p is a universal covering projection, so is q.

Proof (i) Consider A =7n(X\A) as the index set for the n-celis of the
adjunction (X, 4). For every A€ A, choose a characteristicmap ¢, : B"— X
for the cell e,. Then, take A = {(z,))eX x A : p(z)—cl(eo)} and let ¢;
denote the unique lifting of < with ¢; (eo)—z for any T=(z,2)eA (see
Theorem A.8.5). Next, define f B'xA—X by (s, e 3(s). The restriction
15" x A factors through A therefore, inducing a map 8" x A A
It will be shown that X may be viewed as being obtained from 4 by
adjoining B" x A via f.

First, prove that every point XX \A corresponds to a unique point in
B"x A. To this end, notice that p(£)¢A, and so p(X)=¢,(s), for a
unique AeA and a unique seB". Now, let W denote the line segment in
B" connecting s to e, and let w : W — X denote the unique lifting of
.| W, with w(s) = %. Then, % = ¢x(s), with 1 = (o(e,), ).

Second, X has the right topology. It will be shown that a subset U < X
is open if UnA is open in A and &~ Y(U) is open in B, for every TeA.
Because p is a covering projection, there is an open cover {V, : yeI'} of
X such that the induced map V,—p(V,) is a homeomorphism and p(V))
is open in X, for every yel . Since U is open in X iff UV, is open, for
every y, it suffices to assume U < V,, for some y. But then, U is open iff
p(U) is open in X. Now p(UynA=p(UnA) is open in A and

1(p(U) {J.€;~"(U) where the union is taken over all z’s such that
(z AeA,is openin B, for every Ae A; thus, because X has the final topology
with respect to the inclusion of 4 and the characteristic maps ¢;, the set
p(U) is open in X.

(ii) According to the condition on n, each attaching map for an n-cell
of (X, A) has a simply connected domain, and so it has liftings to A
Use each of these liftings to attach an n-cell to A. The result is a space X
and the universal property of the attachings determines the covering
projection 4. O

Collaring
Whenever dealing with pairs (X, 4) which are adjunctions of n-cells, n > 0,
sometimes it is necessary to enlarge open sets of the subspace A to
appropriate open sets of X. This can be done by the technique of ‘collaring’,
which is described next.
Let f :1UB,— X be a characteristic map, and let f : 11§, — A4 be the
corresponding attaching map. Assume that every ball B, is just a copy of
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B”; thus, one can multiply any se B, (viewed as a vector of R") by a scalar
tel; the product ts is still a point of B,. The f-collar of a set V < A is
defined to be the subset

C;(V)zVuf({ts s sef "YW, 1<)
The following is an immediate consequence of the definition.

Lemma 1.1.7 Let (X, A) be an adjunction of n-cells, let f be a characteristic
map for the adjunction, and let V be a subset of A. Then

@) G(V)nA=V;

(i) 7 HC ) ={ts s sef ' (V) i<i<l)

(i) Cz(V) is open in X iff Vis open in A,

(iv) if V is a closed subset of A, the closure of the f-collar of V is the set

C(V)= Vo f({ts: sef~1(V), I<i<yy,

(v) if e is an n-cell of (X, A), then enm;ég iff enCi(V)# & iff
envV #Q;

(vi) C;(V) contains V as a strong deformation retract;
Moreover, if (V.) is a locally finite family of subsets of A (respectively, a
family of pairwise disjoint subsets of A), then

(vii) (Cz(V,)) is a locally finite family of subsets of X (respectively, a family
of pairwise disjoint subsets of X). dJ

The next result requires a little work.

Lemma 1.1.8 Let (X, A) be an adjunction of n-cells and f be a characteristic
map for the adjunction. If V < A is open or closed in A, then

GV =V (M xG1])
where f is the attaching map corresponding to f and g : f ~ (V)= V is the

map induced by f.

Proof Assume first that V is open in A. Then, because of Lemma 1.1.7
(iii), C;(V) is open in X; the stated result now follows by application of
the restriction law (L4) of adjunction spaces, and parts (i) and (ii) of the
previous lemma. In particular, notice that

GlA)y = AL (f 1A x 3, 1]).

Now if V is closed in A4, then C(V)is closed in C(A), and so the statement
follows again by (L4). O
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Corollary 1.1.9 If V is an open or closed subspace of A, then the inclusion
Vs> Cs(V) is a closed cofibration. U

The fact that the characteristic maps are not unique might be quite
advantageous; indeed, it permits the choice of the ‘right coordinates’ for a
variety of purposes, as proved by the next proposition.

Proposition 1.1.10 Let (X, A) be an adjunction of n-cells, V be a closed set
of A and U be an open subset of X containing V. Then there is a characteristic

map f for the adjunction such that the closure C;(V) is still contained
in U.

Proof Choose arbitrarily a characteristic map f : uB,— X, where the
index e runs through all the n-cells of the adjunction. The mapfdetermines
an attaching map f : S,—» A whose restriction to a sphere S, will be
denoted by f,. The objective is to construct cellwise a ‘transformation of
coordinates’, which keeps the attaching map f invariant. Notice that f
must be modified only for cells e, such that
(%) F({ts:seS,. f(s)eV,i<t<1}) ¢ U.
Let e be such a cell. Then V,=f,"!(V) is non-empty and f(Be) is not
completely contained in U. Hence the set U, = B,\ f ~'(U) is a non-empty
closed subset of B, which does not meet the closed set V,. The distance
o, between the closed sets U, and V, is defined and different from 0,
because these two closed sets are both compact subsets of a metric space.
It is easy to conclude from (x) that §, < 1. Next, select a homeomorphism
h, : B,— B, which coincides with the identity map on the boundary of B,
and shrinks the ball {seB,:|s|<1—4, radially into the ball
{seB, : |s] <3}; then define
J1B.=f1B.oh; "

This completes the construction of the desired characteristic map f. [J

Exercises

1. Let (Y, D) be an adjunction of n-cells and let 4 be a contractible space.
Show that any map f : D — A4 can be extended over Y.

2. Let M(m,n) be a Moore space of type (m,n). Show that M(x,n) is
up to homotopy independent of the choice of the basis I selected for
the kernel of the canonical homomorphism FA(n)— 7; show also that
M(n,n) does not depend on the choice of the representatives
f,:8"—= V_8" (see Example 10).



